澳门新葡萄娱乐网址埃利亚学派代表人物:芝诺,芝诺的个人理论介绍

芝诺 (Zeno of
Elea)约公元前490年生于义大利半岛南部的埃利亚;约公元前425年卒。古希腊数学、哲学家。另以芝诺悖论著称,即提出的一系列关于运动的不可分性的哲学悖论。由于量子的发现,这些悖论已得到完善的解决。

芝诺悖论(Zeno’s paradox)是古希腊数学家芝诺(Zeno of
Elea)提出的一系列关于运动的不可分性的哲学悖论。

芝诺悖论错在哪里?以刘翔和乌龟赛跑为例解释芝诺悖论

芝诺生活在古代希腊的埃利亚城邦。他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友.关于他的生平,缺少可靠的文字记载。

悖论学说

芝诺,古希腊数学、哲学家。他是埃利亚学派的着名哲学家巴门尼德的学生和朋友。芝诺从“
多”和运动的假设出发,一共推出了40个各不相同的悖论。现存的芝诺悖论至少有8个,其中关于运动的4个悖论最为着名。

两分法

这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支援他老师巴门尼德关于”存在”不动、是一的学说。这些悖论中最著名的两个是:”阿基里斯跑不过乌龟”和”飞矢不动”。这些方法可以用微积分的概念解释,但还是无法用微积分解决,因为微积分原理存在的前提是存在广延(如,有广延的线段经过无限分割,还是由有广延的线段组成,而不是由无广延的点组成。),而芝诺悖论中既承认广延,又强调无广延的点。这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的机械论的分歧点。

直到19
世纪中叶,人们普遍认为芝诺悖论不过是一些诡辩。英国数学家罗素感慨的说:“在这个变化无常的世界上,死后得不到应有的评价的最典型例子莫过于埃利亚的芝诺了。他虽然发明了四个无限微妙无限深邃的悖论,后世的大批哲学家们却宣称他只不过是个聪明的骗子,而他的悖论只不过是一些诡辩。”

芝诺:”一个人从A点走到B点,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2……”如此回圈下去,永远不可以到终点。假设此人速度不变,走一段的时间每次除以2,时间为实际需要时间的1/2+1/4+1/8+……,则时间限制在实际需要时间以内,即此人与目的地距离可认为任意小,却到不了。实际上是这个悖论自己限定了时间,当然到达不了。《庄子·天下篇》中也提到:”一尺之棰,日取其半,万世不竭。”芝诺与庄子悖论的区别为芝诺悖论一定时间内行走的距离不变,而庄子时间不变,这段时间里的工作却越来越少,可以看出芝诺限制了时间,而庄子的理论可以使时间为无穷大。

三个例子

芝诺在哲学上被亚里士多德誉为辩证法的发明人。黑格尔在他的《哲学史讲演录》中指出:“芝诺主要是客观地辩证地考察了运动”,并称芝诺是“辩证法的创始人”。

追乌龟

追乌龟

以刘翔为例,乌龟在他前面100米跑,他在后面追,但他不可能追上乌龟。在竞赛中,追者首先必须到达被追者的出发点,当刘翔追到100米时,乌龟已经又向前爬了10米,于是,一个新的起点产生了;刘翔必须继续追,而当他追到乌龟爬的这10米时,乌龟又已经向前爬了1米……只要乌龟还在爬,刘翔永远也追不上乌龟!

阿喀琉斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不大概追上乌龟。因为在竞赛中,追者首先必须到达被追者的出发点,当阿喀琉斯追到100米时,乌龟已又向前爬了10米,于是,一个新的起点产生了;阿喀琉斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已向前爬了1米,阿喀琉斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自个之间制造出一个距离,无论这个距离有多小,但只要乌龟不停地奋力向前爬,阿喀琉斯就永远也追不上乌龟!”乌龟”
动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应当达到被追者出发之点,此时被追者已往前走了一段距离。因此被追者总是在追赶者前面。”如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑”数学派”所代表的毕达哥拉斯的”
1-0.999…>0″思想。然后,他又用这个悖论,嘲笑他的学生芝诺的”1-0.999…=0,但1-0.999…>0″思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的”1-0.999…=0,或1-0.999…>0″思想。

阿喀琉斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不大概追上乌龟。因为在竞赛中,追者首先必须到达被追者的出发点,当阿喀琉斯追到100米时,乌龟已又向前爬了10米,于是,一个新的起点产生了;阿喀琉斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已向前爬了1米,阿喀琉斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自个之间制造出一个距离,无论这个距离有多小,但只要乌龟不停地奋力向前爬,阿喀琉斯就永远也追不上乌龟!

“乌龟”
动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。因此被追者总是在追赶者前面。”我们当然知道刘翔能够捉住海龟,跑步者肯定也能跑到终点。

有人解释道:如果慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。芝诺当然晓得阿喀琉斯能够捉住海龟,跑步者肯定也能跑到终点。类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿基里斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿基里斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。上面说到无穷个步骤是难以完成。以上初等数学的解决办法,是从结果推往过程的。

“乌龟”
动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应当达到被追者出发之点,此时被追者已往前走了一段距离。因此被追者总是在追赶者前面。”

类似刘翔追上乌龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说刘翔永远也追不上乌龟呢?

悖论自己的逻辑并没有错,它之所以与实际相差甚远,在于这个芝诺与我们采取了不同的时间系统。人们习惯于将运动看做时间的连续函式,而芝诺的解释则采取了离散的时间系统。即不管将时间间隔取得再小,整个时间轴仍是由无限的时间点组成的。换句话说,连续时间是离散时间将时间间隔取为无穷小的极限。本来这归根毕竟是一个时间的问题。

如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑”数学派”所代表的毕达哥拉斯的”
1-0.999…>0″思想。然后,他又用这个悖论,嘲笑他的学生芝诺的”1-0.999…=0,但1-0.999…>0″思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的”1-0.999…=0,或1-0.999…>0″思想。

问题出在这里:我们在这里有一个假定,那就是假定刘翔最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。而无穷个步骤是难以完成。

譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。实际情况是阿基里斯必然会在100/9秒之后追上乌龟。依照悖论的逻辑,这100/9秒可以无限细分,给我们一种很像永远也过不完的印象。但本来根本不是如此。这就类似于有1秒时间,我们先要过一半即1/2秒,再过一半即1/4秒,再过一半即1/8秒,这样下去我们永远都过不完这1秒,因为不管时间再短也可无限细分。但本来我们真的就永远也过不完这1秒了吗?显然不是。尽管看上去我们要过1/2、1/4、1/8秒等等,很像永远无穷无尽。但本来时间的流动是匀速的,1/2、1/4、1/8秒,时间越来越短,看上去无穷无尽,本来加起来只是个常数而已,也就是1秒。所以说,芝诺的悖论是不存在的。

有人解释道:如果慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。

悖论本身的逻辑并没有错,它之所以与实际相差甚远,在于这个芝诺与我们采取了不同的时间系统。人们习惯于将运动看做时间的连续函数,而芝诺的解释则采取了离散的时间系统。即无论将时间间隔取得再小,整个时间轴仍是由无限的时间点组成的。

飞矢不动

芝诺当然晓得阿喀琉斯能够捉住海龟,跑步者肯定也能跑到终点。

《庄子;天下篇》中也提到:“一尺之棰,日取其半,万世不竭。”

设想一支飞行的箭。在每一时刻,它位于空间中的一个特定位置。由于时刻无持续时间,箭在每个时刻都没有时间而只能是静止的。鉴于整个运动期间只包含时刻,而每个时刻又只有静止的箭,所以芝诺断定,飞行的箭总是静止的,它不大概在运动。上述结论也适用于时刻有持续时间的情况。对于这种情况,时刻将是时间的最小单元。假设箭在这样一个时刻中运动了,那么它将在这个时刻的开始和结束位于空间的不同位置。这说明时刻具有一个起点和一个终点,从而至少包含两部分。但这显著与时刻是时间是的最小单元这一前提相矛盾。因此,纵然时刻有持续时间,飞行的箭也不大概在运动。总之,飞矢不动。箭悖论的标准解决方案如下:箭在每个时刻都不动这一事实不可以说明它是静止的。运动与时刻里发生什么无关,而是与时刻间发生什么有关。假如一个物体在相邻时刻在相同的位置,那么我们说它是静止的,反之它就是运动的。

类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿基里斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿基里斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。上面说到无穷个步骤是难以完成。

飞矢不动:一根箭是不可能移动的,因为箭在其飞行过程中的任何瞬间都有固定位置,则可知一枝动的箭是所有不动的集合,所以可导出一根箭是不可能移动的。中国古代的名家惠施也提出过,“飞鸟之景,未尝动也”的类似说法。

以上初等数学的解决办法,是从结果推往过程的。悖论自己的逻辑并没有错,它之所以与实际相差甚远,在于这个芝诺与我们采取了不同的时间系统。人们习惯于将运动看做时间的连续函式,而芝诺的解释则采取了离散的时间系统。即不管将时间间隔取得再小,整个时间轴仍是由无限的时间点组成的。换句话说,连续时间是离散时间将时间间隔取为无穷小的极限。

“飞矢不动”中的“矢”指的是弓箭中的箭。正常的射箭,只要箭离了弦,就能飞出去。但是,芝诺说,射出去的箭是不动的,因此是不能够到达另一个位置的。截取“飞矢”的每一个瞬间,它在空中都是“静止”的。既然每一个瞬间都是静止的,所有的瞬间加起来也应该是静止的,所以,“飞矢”是“不动”的。

本来这归根毕竟是一个时间的问题。譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。实际情况是阿基里斯必然会在100/9秒之后追上乌龟。依照悖论的逻辑,这100/9秒可以无限细分,给我们一种很像永远也过不完的印象。但本来根本不是如此。这就类似于有1秒时间,我们先要过一半即1/2秒,再过一半即1/4秒,再过一半即1/8秒,这样下去我们永远都过不完这1秒,因为不管时间再短也可无限细分。但本来我们真的就永远也过不完这1秒了吗?显然不是。尽管看上去我们要过1/2、1/4、1/8秒等等,很像永远无穷无尽。但本来时间的流动是匀速的,1/2、1/4、1/8秒,时间越来越短,看上去无穷无尽,本来加起来只是个常数而已,也就是1秒。所以说,芝诺的悖论是不存在的。

“飞矢不动”这个悖论最关键的地方,是所谓“瞬间”。理论上的物理学“瞬间”意思是时间长短为零。而在实际中,时间长短永远不可能为零。

飞矢不动

简单来说,“芝诺悖论”的错误就在于,他将无穷小彻底等同于零。无穷小等于零之后,再怎么相加、累积,最终的结果当然都是零,所以得出推论“飞矢”是“不动”的。但是,真正的概念是无穷小只是趋近于零,无穷个“趋近于零”的无穷小相加、累积之后,就会有一个确切的值。

设想一支飞行的箭。在每一时刻,它位于空间中的一个特定位置。由于时刻无持续时间,箭在每个时刻都没有时间而只能是静止的。鉴于整个运动期间只包含时刻,而每个时刻又只有静止的箭,所以芝诺断定,飞行的箭总是静止的,它不大概在运动。

以现实的态度理解“瞬间”这个概念就行。假设芝诺所说的“瞬间”可以用照相机拍下来,只要曝光及快门速度正确,每一张照片里,飞行的箭似乎“确实”是“不动”的。但是,这正是造成我们错觉的所在。不管照相机多么先进,不管高速摄影快门速度多块,现实之中,它永远不可能是零。

上述结论也适用于时刻有持续时间的情况。对于这种情况,时刻将是时间的最小单元。假设箭在这样一个时刻中运动了,那么它将在这个时刻的开始和结束位于空间的不同位置。这说明时刻具有一个起点和一个终点,从而至少包含两部分。但这显著与时刻是时间是的最小单元这一前提相矛盾。因此,纵然时刻有持续时间,飞行的箭也不大概在运动。总之,飞矢不动。

“芝诺悖论”之所以被称之为“悖论”,他自己也被后世称为“诡辩论者”,是因为他的悖论完全违反常理,但是,人们又不知道如何才能反驳他。

箭悖论的标准解决方案如下:箭在每个时刻都不动这一事实不可以说明它是静止的。运动与时刻里发生什么无关,而是与时刻间发生什么有关。假如一个物体在相邻时刻在相同的位置,那么我们说它是静止的,反之它就是运动的。

在微积分中有一个重要的概念叫做“无穷小”,数学符号写作“dx”。把无穷小的概念与零混淆,是初学者最容易犯的错误之一,虽然无穷小与零无限接近,但若把两者等同起来,得到的结果将是天差地别,比如出现飞矢“动”与“不动”的矛盾。

游行队伍

数学中无穷小的概念已经解决了芝诺悖论问题。无穷小的定义涉及极限的定义,下面写出几个相关的定义,数学恐惧症可忽略下文^_^

首先假设在操场上,在一瞬间里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。

◆◆◆◆观众席A

▲▲▲▲伫列B

▼▼▼▼伫列C

B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位。

◆◆◆◆观众席A

▲▲▲▲伫列B……向右移动

▼▼▼▼伫列C……向左移动

而此时,对B而言C移动了两个距离单位。也就是,伫列既可以在一瞬间里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。因此伫列是移动不了的。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

CopyRight © 2015-2020 澳门新葡萄娱乐网址 All Rights Reserved.
网站地图xml地图